If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2+32w=424
We move all terms to the left:
3w^2+32w-(424)=0
a = 3; b = 32; c = -424;
Δ = b2-4ac
Δ = 322-4·3·(-424)
Δ = 6112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6112}=\sqrt{16*382}=\sqrt{16}*\sqrt{382}=4\sqrt{382}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{382}}{2*3}=\frac{-32-4\sqrt{382}}{6} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{382}}{2*3}=\frac{-32+4\sqrt{382}}{6} $
| 6a-3a=a+205 | | X=90(x+22)(2+3x) | | 4(2a-3)+24-13=23 | | (x+22)(2+3x)=90 | | f÷-2/3=-1/3 | | y^2-8y+17=7 | | -2(x+2)(3-x)=0 | | 3(2x+4)=4(x+1) | | 6x-50=16x-128 | | (x+22)+(2+3x)=90 | | 9(k-4)=4.4 | | 8+v/2=-6 | | 5-x+6x=0 | | x−13=49 | | x=0.25x+62500 | | 17=3v+5 | | 13=j/4–9 | | 69=(6x+3) | | (7/4)(19)(w)=532 | | 7n+12=1/2*(14n+24) | | -15c=15 | | c-10=-4 | | 69=6x+3 | | F(x)=X^2+12X+7 | | x=(x+250000*0.05)*5 | | 400000=x^2 | | 136+12x=63x2 | | -16x^2+10x-6=0 | | (x+3)(2x+4)/2=56 | | (w+8)*(3w+8)=488 | | 21x7=x52x10 | | x*40=36 |